sin x = 1/ sqrt(2) or - 1/sqrt(2)
x= pi/4, 3pi/4 , 5pi/4 or 7pi/4 (1st 2 for 1/sqrt(2) and next 2 for - 1/sqrt(2)
Thursday, September 30, 2010
If A, B, C are the angles of a triangle...?
prove that cos [(B-C) / 2] - sin (A/2) = 2 sin (B/2) sin (C/2)
A+B+C = pi
so A/2 = pi-(B+C)/2
sin (A/2) = sin (pi-(B+C)/2) = cos (B+C)/2
so
cos [(B-C) / 2] - sin (A/2) =
= cos [(B-C) / 2] - cos [(B+C)/2] = 2 sin (B/2) sin (C/2)
using COS A - COS B = 2 cos sin (A+B)/2 sin (A-B)/2
A+B+C = pi
so A/2 = pi-(B+C)/2
sin (A/2) = sin (pi-(B+C)/2) = cos (B+C)/2
so
cos [(B-C) / 2] - sin (A/2) =
= cos [(B-C) / 2] - cos [(B+C)/2] = 2 sin (B/2) sin (C/2)
using COS A - COS B = 2 cos sin (A+B)/2 sin (A-B)/2
simplify the following?
simplify the following? cos(2x-y)cosy - sin(2x-y)siny?
using cos A cos B - sin A sin B = cos(A+B) and putting A = 2x-y and B = y we get
cos(2x-y)cosy - sin(2x-y)siny = cos (2x-y+y) = cos 2x
using cos A cos B - sin A sin B = cos(A+B) and putting A = 2x-y and B = y we get
cos(2x-y)cosy - sin(2x-y)siny = cos (2x-y+y) = cos 2x
Subscribe to:
Comments (Atom)
