prove that cos [(B-C) / 2] - sin (A/2) = 2 sin (B/2) sin (C/2)
A+B+C = pi
so A/2 = pi-(B+C)/2
sin (A/2) = sin (pi-(B+C)/2) = cos (B+C)/2
so
cos [(B-C) / 2] - sin (A/2) =
= cos [(B-C) / 2] - cos [(B+C)/2] = 2 sin (B/2) sin (C/2)
using COS A - COS B = 2 cos sin (A+B)/2 sin (A-B)/2
Thursday, September 30, 2010
Subscribe to:
Post Comments (Atom)

No comments:
Post a Comment